The American Physiological Society Press Release

press release logo

APS Contact: APS Communications Office

Email: communications@the-aps.org

Phone: 301.634.7209

Twitter: @APSPhysiology


Chemotherapy May Lead to Mitochondrial Dysfunction in Skeletal Muscle

Study finds fewer mitochondria in muscle tissue, increased oxidative stress in patients undergoing cancer treatment

Rockville, Md. (October 4, 2018)—Chemotherapy drugs to treat breast cancer may promote muscle mitochondrial dysfunction, according to new research. Dysfunctional mitochondria, the energy centers of the cells, may contribute to fatigue and weakness that some people with breast cancer experience through the course of disease treatment. The study is published ahead of print in the American Journal of Physiology—Cell Physiology.

Breast cancer, the most commonly diagnosed cancer in the U.S., has been considered one of the less-damaging cancers in terms of severe muscle wasting and weight loss (cachexia). However, some people with breast cancer may also suffer from muscle loss and fatigue that limits their daily activities. There is limited research on the effect of breast cancer and its treatments on the muscles in human patients.

Researchers from the University of Vermont compared muscle fibers from women with breast cancer who were undergoing chemotherapy after surgical removal of cancerous tumors. The women had a lower cross-sectional area of muscle fibers—an indication of muscle loss—when compared to a healthy control group. A reduced number of mitochondria was also seen in the cancer group.

The research team also treated mouse muscle cells with the chemotherapy drugs doxorubicin and paclitaxel, medications that are commonly used to treat breast cancer. Both of the drugs led to a lower number of mitochondria, increased oxidative stress and atrophy. Oxidative stress is a type of cellular damage that can lead to cell death and chronic disease.

The negative effect of chemotherapy drugs on muscle mitochondria “provides a possible explanation for the high prevalence of fatigue and functional disability across all cancer types, including those not typically characterized by cachexia, such as breast cancer,” the researchers wrote. “Interventions designed to counter these effects on muscle may help alleviate some of the burden of the disease on patients.”

Read the full article, “Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress,” published ahead of print in the American Journal of Physiology—Cell Physiology.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.